Confidential Data Rails

Secure, Confidential, Programmable Transfer of Data

Version 0.11 - November 2025

Ramtin M. Seraj Wenxing Duan Hansol Lee
ramtin.seraj@piplabs.xyz wenxing.duan@piplabs.xyz hansol.lee@piplabs.xyz
Steven Wang Jongwon Park Hao (Leo) Chen
steven.wang@piplabs.xyz jongwon@piplabs.xyz leo@piplabs.xyz
Abstract

We introduce Confidential Data Rails (CDR), a secure and programmable on-chain
storage and transfer protocol for private data. This novel core functionality of Story
allows users to securely upload confidential data to the network and define on-chain
access conditions. The data then becomes automatically accessible to other users who
meet those conditions. The CDR protocol is powered by a decentralized collection of
trusted execution environments (TEEs) that operate off-chain and are managed and
synchronized by a smart contract on Story. Built on the same secure foundation of
Story, this architecture ensures complete data confidentiality while offering flexibility
through programmable access control and decentralized infrastructure. IP Vault is one
of the first applications of this powerful protocol. It allows IP owners to securely attach
confidential data to their registered on-chain IP assets, data that becomes automatically
accessible to license holders without further IP owner involvement. IP Vault combined
with Story’s existing powerful infrastructure for IP, streamlines the entire journey of IP
assets, from registration and licensing to monetization and automatic confidential data
delivery. This integrated ecosystem makes IP assets truly programmable and creates
an open, composable marketplace for IP data assets (Al datasets, API keys, ...) with
privacy preserved throughout the lifecycle.

1 Introduction

Earlier this year, Story!! was launched as a scalable layer 1 blockchain designed to help
creators register, manage and monetize their intellectual property (IP), such as art, music,
data and Al models, as programmable assets on the chain.

Story uses a novel multi-core architecture where a main EVM-compatible core automat-
ically triggers a collection of specialized cores for enhanced performance. For instance, the
IP Core, the first specialized core on Story, handles IP registration, licensing, and track-
ing derivative works through large and complex IP webs with thousands of connections. It

achieves this using natively-supported graph data structures and high-performance traversal
algorithms for efficient queries. Using Story, creators and IP owners can register their IP as-
sets on-chain and use the Programmable IP License (PIL)!? framework to set programmable
licenses and automate royalty payments with legal bindings. The release of Story unlocks IP
as a new class of programmable on-chain asset, gaining significant attention from ecosystem
applications that register various forms of IP on-chain.

However, a challenge remained in the end-to-end journey of IP assets: How can IP’s data
be transferred confidentially and securely from the owner to the license holder? IP data spans
a wide range of formats and sizes, personal or business data for Al training, API keys for
Web2 platforms, digital records from artists and creators, or even keys to external accounts.

Although many decentralized storage solutions (IPFSP!l, Walrus!¥, Shelby!, etc.) have
recently gained attention, most of these solutions focus primarily on data availability and
liveness guarantees through cost-effective replication. They either do not address critical
confidentiality requirements or require complex interactions with secondary protocols, which
results in fragmented user experience and inefficiency. These challenges inspired us to design
the Confidential Data Rails protocol, a novel solution that unlocks new applications.

1.1 Problem Definition

The goal is to build a unified system that securely, efficiently, and confidentially facilitates
the transfer of data between users that satisfy the following properties:

Security and Reliability It must provide the same level of security and decentralization as
the other on-chain asset. Thus, it must be operated by a decentralized set of participants
N, maintaining liveness and security even if up to one-third of participants (N/3) are
offline or act malicious.

Confidentiality and Privacy The data must remain confidential and protected from ev-
eryone including protocol participants except the data owner and authorized users. It
must maintain privacy even when a certain ratio (t) of protocol participants act ma-
liciously and/or collude. For this setup, we consider a reconstruction threshold ¢ + 1
and validity of N > 2¢ + 1 to guarantee liveness.

Note that the requirements only cover secure storage and transfer of data. Malicious
actions by a valid recipient, such as leaking data post-transfer, are outside the scope of
this work. Other methods, such as cryptographic fingerprinting!® and on-chain incen-
tives, can be used to identify and adjudicate such actions as an additional safeguard.

Scalability The design must be scalable and support various forms and any size of data.
This includes Al training data, digital assets, biomedical data, and more. Scalability
also means practical affordability, making it financially feasible to store data. If storage
costs grow exponentially with the size of the data, the system is not truly scalable.

Functionality The system should support Dynamic Access Control and Programmability.
Dynamic Access Control enables automated data access based on-chain logic (e.g. IP

2

ownership and licensing), eliminating the need for direct interactions between users.
The system adapts to the evolving set of authorized consumers, which is not known
in advance and changes over time based on on-chain state. The system should also
natively support programmability, so that the data provider can require a wide range of
on-chain conditions. This covers a wide range from basic ones like time-limited access to
more advanced capabilities where the data provider can specify which computational
environments can access the data and enforce usage restrictions. This is a powerful
property that unlocks many forms of applications (more on this topic later in this
chapter).

Usability The user experience is a critical factor that is often overlooked when designing
decentralized systems. The system has to be designed for a seamless user experience.
It has to minimize fragmented user experience, where a user has to go to multiple
providers setup with different payment methods and has to often tolerate huge delays
when these providers have to synchronize and settle.

1.2 Confidential Data Rails

We propose Confidential Data Rails (CDR), a new core in Story’s multi-core architec-
ture. A CDR is a secure, confidential, on-chain storage space that can be attached to any
on-chain asset or smart contract. Each CDR is only accessible by users who satisfy the condi-
tions set initially. Whenever a user satisfy the on-chain condition (e.g. acquiring a license to
an IP asset), they can automatically access the CDR without requiring further involvement
from the initial data uploader.

An example application of the CDR protocol on Story is IP Vault. IP Vault is an instance
of CDR that restricts write access to the IP owner and read access to license holders. On
Story, each IP Asset is an ERC-721 (NFT). The owner of this NFT (IP Owner) has the
power to setup the terms and conditions for other users to acquire a license to use the IP
asset and can also attach confidential data to the IP Asset using IP Vault.

/ \ Register IP

IP Provider

1P Asset 1 Licence Acquire license

A

Secure upload of 1P Vault 1

Secure download of
- ’ the key using CDR 1 the key using CDR
Encrypted
1PsData)

- IP Consumer

1 Story Network
Upload the Download the
encrypted data . . X encrypted data
............................ » Data Availability Providers L S—

Figure 1: Secure and confidential transfer of assets between the IP provider and the IP consumer

Because on-chain data storage is often costly, the CDR protocol is designed to be com-
patible with existing data availability layers. Users can upload encrypted data to any of these
providers and use CDR’s space only for the encryption key. This makes the CDR protocol
highly scalable and cost-effective while not relying on underlying data availability layers for
data privacy.

Furthermore, the CDR protocol supports full on-chain programmability, including time-
bounded access, time-locks, role-based access, and restrictions on data processing methods.
This flexibility unlocks a wide range of applications. An interesting application is limiting
the type of operations on data, where the data provider sets conditions that require other
authorized users to provide remote attestation for a Trusted Execution Environment (TEE)
loaded with a specific binary, exposing only the final result. This powerful concept can be
used to restrict the types of operations allowed to be performed or prevent full access to
the data. using this technique, Al data providers might require unlocking of their data only
to a TEE where a model is trained and automatically registers the Al model as a new IP
on Story with distributed ownership to the data providers and Al trainer. This allows for
creating powerful AI models with shared ownership based on each party’s contributions.

R Register Dataset as IP
\

- Upload Data Access
Key Using CDR K
DataOwner1 | AlTraining |eoemoremmmssmesosssessessd

Access
Data Keys
Using CDR

' '

1

! '

' 1

Register the dataset as IP ! [
! 1

\ :r Paset2 [€—— licence]: ! Training 1
L J ! 1

! 1

1 \ .

1

! 1

1

'

(UploadDataAccess .y ¢

Key Using CDR

Data Owner 2

aaaaaa

R Register the dataset as IP

< Upload Data Access

Ke,

Register
AI model Upload
Al model

Story Network

Figure 2: Data providers and model trainers participate to train and own a new Al model using Story and Confidential
Data Rails

Similarly, the data access can be limited to other privacy-preserving verifiable execution en-
vironment (e.g. private smart contract). For instance, an AT model can limit the user’s access
to inference results only while preserving both the user’s input data and the model param-
eters. These are just some examples of how data and computation can work together, with
the CDR protocol serving as the building blocks that power protocols like Agent TCP /IP[7.

2 Architecture Overview

The Confidential Data Rails protocol’s architecture consists of three components: a com-
mittee of participants (CDR Committee), a collection of Trusted Execution Environments
(TEEs) running specific binaries (kernels), and a smart contract deployed on Story (CDR’s
core contract).

Upon joining, each committee member must spin up and register a TEE instance loaded
with a specific binary. We call this instance a kernel. Kernels collectively execute crypto-
graphic protocols such as Distributed Key Generation (DKG) and Threshold Decryption to
securely manage and utilize encryption keys without exposing private key material to any
single entity. At the heart of this design, the CDR’s core contract manages a wide-range of
on-chain responsibilities. This smart contract orchestrates the kernels to jointly follow the
steps of DKG. this process generates a public/private key pair without any single one of
them ever knowing the full private key. Instead, each participant ends up with a share of the
secret key, and a threshold of participants is required to reconstruct or use it.

With this foundation in place, the core contract accepts user requests to upload or access
CDRs. Before accepting upload requests, the contract assigns a unique ID to the request.
This ID is later used for encryption of the data. After uploading the encrypted data and
setting the access conditions, the data is stored on-chain and indexed by the unique ID. Upon
receiving a download request, it validates on-chain conditions set by the data uploader. If
all conditions are satisfied, it signals the kernels (through events) to perform distributed
threshold decryption and decode the content for the recipient.

Committee Member Committee Member

Kernel

CDR's

Committee Member
Core Contract Committee Member

Kernel

Kernel

Committee Member Committee Member

Kernel

Committee Member

Figure 3: Confidential Data Rails High-Level Architecture Overview

2.1 Core Components

In this section, we examine the architecture’s core components in detail.

2.1.1 CDR Committee

The CDR committee consists of Story node operators (validators) who have opted-in to
participate in the protocol. They receive additional rewards based on their participation and
performance, and risk having their stakes slashed if they act maliciously or become inactive
for a long period of time.

The main responsibility of a committee member is to run kernel and facilitate its com-
munication with other kernels and the core contract. The kernels only operate when they
receive ordered events (logs) from the core contract or when they broadcast messages from
other kernels. Committee members cannot access the internal state of the kernels or request
arbitrary actions from them. Thus, the committee members act only as intermediaries, for-
warding events from the core contract (along with inclusion proofs) and submitting results
back to the core contract. They need active participation to receive rewards and receive
penalties for not participating or submitting invalid data. As part of future improvements
to this protocol, in addition to penalties for inactivity, cryptographic methods are used to
identify whether a secret share stored in a kernel has been leaked or used maliciously. If such
a case is reported, the validator’s stake is at risk (checkout section 3 for more details).

Rewards come from two sources: CDR usage fees and Story’s UBI (Universal Basic In-
come) pool. UBI is a fund of newly minted Story tokens that incentivizes validators to provide
new network functionalities. Initially, UBI helps cover validator rewards and TEE-friendly
server costs. Over time, CDR usage fees will fully fund these rewards.

The CDR protocol operates in epochs. In every n block, the committee can change and
secret shares of the public key are updated as a security measure. Story validators who
participate in the CDR protocol cannot remove themselves from the Story network until
they are completely off-boarded.

2.1.2 Kernels

As mentioned earlier, a kernel is a Trusted Execution Environment (TEE) instance loaded
with a specific binary. A TEE is a protected execution environment inside a CPU (e.g., Intel
TDX, AMD SEV, ARM TrustZone) that isolates code and data from the rest of the system,
including the OS and hypervisor. Its memory is encrypted and accessible only to the specified
binary. If the binary is tampered with, the memory becomes inaccessible. To verify that a
kernel is healthy and untampered, these environments provide remote attestation, a digitally
signed report that proves the integrity and authenticity of the environment. An attestation
report is typically signed with a key rooted in hardware (e.g., Intel’s attestation keys), and
a remote verifier checks this against a trusted certificate authority (e.g., Intel Attestation
Service). The CDR protocol requires that each kernel’s remote attestation report includes
a unique identity, the cryptographic hash of the initial code and data, and a public key for

authenticated and encrypted communication with the smart contract and other kernels. The
CDR’s core contract uses decentralized on-chain protocols such as Automata DCAPE to
validate the authenticity of the signature.

The kernel stores secret shares and consumes events from the core contract to update
its internal state and produce results that are sent to the smart contract and other kernels.
Committee members redirect finalized Story block headers and core contract events to their
kernels. Kernels do not trust committee members and construct their own confidential and
authenticated communication channel with the smart contract. This is accomplished through
several components:

First, every piece of output is signed by the communication key of the kernel. This key
was reported as part of the remote attestation and kernel registry and is used by the core
contract and other kernels to validate the authenticity of the message and sometimes for
confidential async transfer of messages between kernels (used during DKG).

Second, every log (event) received by the kernel has to be received along with event
inclusion proofs. To be able to validate these events, the kernel uses the initialization data
(committed in remote attestation) and runs a light client internally to validate block header
hashes and signatures, and follows Story’s finalized canonical chain. By following the block
headers and using Merkle root of logs (events), kernels can verify inclusion proofs for events
taking any action. The smart contract assigns to each log (event) a sequence number, ensuring
that the events are consumed in order.

Validatorl Validator2
Secure Enclave Secure Enclave
Outputs Contract Events Outputs Contract Events

P + Proofs P + Proofs
Consensus Client Consensus Client

CDR'’s Core Contract

A
Validggor3
Consensus Client
Contract Events Outouts
+ Proofs B
Secure Enclave

Figure 4: Kernels are synchronized through core contract order logs (events)

Although TEE promises no direct access to secret shares by committee members, the
safety of the CDR protocol does not depend on a single TEE instance. A successful attack

would require compromising a threshold majority of these environments during the same
epoch. To minimize this risk, the protocol incentivizes committee members to use diverse,
state-of-the-art TEE architectures from various hardware providers. This prevents a majority
of participants from using the same hardware. If issues are discovered with a TEE architecture
(e.g., Intel SGX), the majority will not be compromised, system confidentiality will remain
intact, and the kernel switch process can be triggered. Additionally, the CDR protocol does
not assume that these environments are secure against side-channel attacks. Therefore, the
binary is implemented using constant-time cryptography with secret-independent memory
access and branching.

2.1.3 The Core Contract

Deployed on Story, the core contract plays several roles in the CDR protocol, including:

e On-boarding and off-boarding validators joining the committee and managing epoch
timing and kernel switch process (more on this later)

e Serving as the source of truth for the kernel binary hash and initialization data, and
verifying remote attestations provided by committee members based on these data

e Managing the distributed key generation (DKG) process and serving as the source of
truth for its state (tracking commitments) and outcome

e Managing CDR upload and download requests and enforcing access conditions (e.g. IP
ownership and valid license possession)

e Collecting fees and distributing rewards based on committee member participation
e Adjudication of reported violations and slashing the stakes of malicious members

The contract can be upgraded through Story’s network governance process.

2.2 Process Overview

This section explains how these components work together and outlines the main processes.
We keep it high-level for clarity. For more technical details, please refer to the cryptographic
primitives section.

2.2.1 Distributed Key Generation

The goal of this process is for the kernels to participate in the Distributed Key Generation
(DKG) and jointly construct one or several cryptographic key pair(s). For this goal, the
smart contract acts as the source of truth, registers participants, and synchronizes the major
steps of Pedersen DKG. Pedersen DKG is a verifiable distributed key generation protocol
based on Pedersen’s verifiable secret sharing (VSS). We set the parameters so that more
than 50% of the participants (t = N/2) must participate to use the private key. It ensures:

8

e No single party knows the private key.
e Participants can verify that all shares are consistent.
e The public key is jointly computed and agreed on.

This process is done in phases, each lasting several blocks (dynamically adjusted by the
smart contract if needed). The start of each phase is emitted as a signal by the smart contract.

Phase 1 - Signup

The process begins when the core contract announces the sign-up phase. During this phase,
validators submit their requests to join the committee and provide remote attestations of
their kernels. During sign-up, the smart contract validates remote attestations using on-chain
verifiers. For large committees, this process can be optimized using an optimistic structure:
proofs are received, but only verified if challenged within a specific time window. If chal-
lenged, on-chain verification is executed. Based on the results, the validator may be penalized
and the challenger may receive rewards. At the end of this phase, the set of participants and
other parameters (e.g. threshold, ...) are emitted as events and would be known to everyone.

Phase 2 - Secret Construction

This phase starts when the validator redirects the setup events to the kernel. Each kernel
generates two random polynomials, one for the secret and one for hiding and verification.
Each kernel then computes commitments to their polynomial coefficients and returns the
results to the validator to be uploaded to the core contract and received by the other val-
idators. These commitments allow others to verify that their shares are valid later.

Phase 3 - Deal Propagation and Verification

Next, each kernel prepares a set of secret shares (aka deals) and privately sends one share
to other participants. This is done by encrypting the shares and transferring them to the
final recipient through a secure channel constructed using other kernels’ DKG public keys.
The transmission of these data is done by the validator and does not need to be uploaded
to the smart contract for performance reasons. During this phase, each kernel validates the
deals it receives from other kernels using the commitments originally submitted to the smart
contract. If a deal is found invalid, the kernel can submit a complaint to the smart contract
and raise a challenge. At the end of the phase, the set of qualified kernels is confirmed and
any challenges have been addressed.

Phase 4 - Finalization

In this phase, each qualified kernel combines valid shares to construct their own final secret
and construct the DKG public key. Each qualified kernel then has to report their calculated
public key to smart contract as a signal to be ready and done with DKG steps. At this phase
all the public keys have to match and this is an extra step to make sure that all the kernels
have agreement over the public key.

Core Contract Committee Member Kernel

Next epoch signup started (event)

Deploy Kemel binary + init data
(chain info, epoch info,
epoch's start block hash, epoch's validator public keys)

Initialization and construction of remote attestation

including (kernel unique ID, binary and init data hash,
communication pubiic key)

remote attestation

Sign up request including
remote attestation (transaction)

Validate remote attestation

(validate binary and init data hash,
validate hardward signature autheticity)

Broadcast validator sign up accepted (kernel detail)

Forwarding finalized block headers

Validate block headers
(check parent hash, check header hash,

check signatures, check majority vote, .
Update finalized height and store valid receipt roots

Latest accepted finalized block

Broadcast DKG secret construction phase started
(participating kernels)

Redirect DKG event
+event inclusion proof

Validate event proof

using validated receipt roots
Create DKG secret and commitments

Commitment signed by kernel's communication key

Redirect kemel's output (transaction)

Validate kenel's signature
store commitment on-chain

Broadcast commitment received (event)

DKG secret construction
phase completed

Broadcast DKG deal distribution phase started (event)

Redirect DKG event
+ event inclusion proof

Validate event proof

using validated receipt roots
Prepare private deals for other kerels

Deals signed by kemel's communication key

Send and receive deals
ffrom the other committee members

Redirect received deals

Validate and process deals
Address any challenges by kemels

DKG deal propagation
phase completed

Broadcast DKG finalization phase started (event)

Redirect DKG event
+ event inclusion proof

Validate event proof

using validated receipt roots
Prepare finalization data (qualified set, ...)

Finalization data signed by kemel's communication key

Redirect kemel's output (transaction)

Process finalization data
DKG finalization
phase completed

Broadcast DKG finalized
(network public key, qualified set, ..) (event)

Core Contract ‘Committee Member Kernel

Figure 5: DKG process

10

2.2.2 Kernel Rotation and Proactive Refresh

This process can be triggered when any of these conditions occurs:

e The epoch is over (the specific number of blocks has passed)

e The number of active committee members are dropping closer to the liveness threshold,
we need to adjust the committee members.

e The kernel binary needs to be updated following the network governance process.

e A vulnerability is identified in one type of TEE architecture, requiring the migration
of the affected kernels to a different architecture. (re-balancing diversification of TEE
architectures)

During the kernel rotation process, the active set of kernels is replaced with a new set of
kernels; thus, validators can join or leave the committee by sending their request to the core
contract. The new committee members have to provide remote attestation of their kernel,
and the core contract validates remote attestations and ensures that the validator has enough
stake. During the time that a validator serves as a committee member, it cannot request the
release of its stakes.

In addition, during this process, a proactive share refresh occurs between old and new
committee members. This changes the secret shares for all members, including existing ones,
without changing the overall secret. Periodically updating the’ secret shares of participants
is an additional security measure that improves the long-term security of the CDR protocol.

2.2.3 Secure Data Transfer

After successful DKG finalization, the core contract is ready to accept requests to upload
and download the content of the Confidential Data Rails. To securely upload data to a CDR,
the data provider first requests a unique ID from the core contract. Then it generates and
uses a symmetric data key and encrypts the data using data key. It can use any choice of
data availability layer for uploading the encrypted data. Then the data provider encrypts
the data key using the DKG’s public key and received unique ID and submits it along side
access conditions to the core contract. The contract validates whether the submitter is the
initial receiver of the unique ID before storing the content on-chain.

For encryption and threshold decryption, the CDR protocol uses a slightly modified
version of TDH2[! where the message encryption of the original paper (hashing the key and
XOR-ing the results with the message) is replaced with standard AES-GCM. This allows
us to use unique ID as additional authenticated data, where we can prevent attacks such as
replay attacks.

After successful data upload, any user that can satisfy access condition, can send a
request to the core contract to access the data. As part of this request, the user reports
a public key that is going to be used for secure transfer of confidential data to the user.
After on-chain validation of conditions, the core contract emits an event and signals Kernels

11

CDR Core Contract IP Registery Contract Decentralized Storage Validators Kernels
1P Owner IP Consumer

Encrypt the data using
a symmetric key "DataKey"

Register IP asset

Upload encrypted data

Request data upload

Allocate unique ID to user

Return unique ID

Encrypt "DataKey" using
CDR public key
and unique ID as label

(TDH2 Encrypt)
Register CDR (unique id, encrypted "DataKey",
access condition (holding valid licence))

Validate IP Ownership and

Validate encrypted data
(TDH2 Validate)
if accepted store data
Aquire a licence
Request Access to the CDR
(Unique ID, auxillary data for validation (licence D),
communication public key)
Check condition (Validate IP Licence)
par

Emit decrypt CDR event

(communication public key)

event (decrypt request)
redirect event + proof
verify event proof
calculate partial and
encrypt by communication public key
return encrypted partials
‘submit encrypted partial
Validate partial
Emit event on received partial
Partial event
Reconstruct "DataKey"
Download encrypted data
Decrypt the data
CDR Core Contract IP Registery Contract Decentralized Storage Validators Kemels
1P Owner 1P Consumer

Figure 6: Secure transfer of data between IP owner and IP consumer using Confidential Data Rails protocol

to participate and execute threshold decryption for that specific user. Following the signal
kernels, the partial decryption shares are prepared, encrypted, and submitted to the core
contract for validation. When the threshold of kernels uploads their shares, the user can
collect the decryption shares and reconstruct the data of the CDR.

Note that for simplicity we only mentioned a single DKG key in this document, in practice
to minimize the risk from time to time, a new set of DKG public keys can be generated and
used by the same set of committee members to secure different group of assets.

2.3 Security Considerations

This section summarizes attack vectors and explains how Confidential Data Rails’ architec-
ture prevents or mitigates them.

2.3.1 Privacy Attacks by Malicious Committee

A major risk in any threshold decryption system is secret leakage or malicious use of secrets
by participating members. A key challenge is that colluding parties could decrypt encrypted
data without leaving any trace to be identified. Although we assume that no more than
one-third of the committee will act maliciously and require half of the committee to collude
to reveal the information, we believe that multiple layers of defense are needed to make such
attacks extremely difficult.

The first layer of defense prevents the committee from directly accessing secrets or running
operations on them. This is achieved using Kernels; isolated state machines running inside
TEEs that only act when smart contract events are provided with proofs. As discussed
previously, the kernel is designed to remove direct access to secrets by committee members
and prevent committee members from being able to trigger unauthorized malicious actions.
Also, every output of the kernel is signed by its communication key and can be authenticated
on-chain, which makes the committee member unable to fabricate an output. The only
malicious action by the committee member can be blocking communication between the
kernel and the smart contract, which would result in a loss of reward for the committee
member.

While the CDR protocol uses cryptographic implementations that support constant
times, non-deterministic memory access, etc., TEEs are sometimes vulnerable (e.g., attacks
on Intel SGX) and can be compromised from time to time (e.g. side-channel attacks). Al-
though such attacks are often expensive and time-consuming and might not be feasible to
carry out during the life cycle of a kernel (during an epoch), the CDR protocol does not rely
on a single TEE’s guaranty for protocol safety. An attack would require breaking a thresh-
old number of TEE environments. The use of frequent kernel switch processes (epochs) and
proactive secret refresh combined with the use of diversified TEE architecture makes it really
hard to gain enough secrets to be able to attack during an epoch. The old kernel after the
epoch switch destroys its secret share and becomes inactive. If a vulnerability is identified
in a TEE architecture at any time, the kernel switch process is triggered, and the protocol
prevents use of the vulnerable environment.

Additionally, in the upcoming updates, an extra layer of protection will be introduced
to identify leaks or misuse of shares, detect malicious parties, and penalize them, since all
committee members are staked. Recent state of the art techniques allow to leave identifiable
traces on secrets that are tamper proof (see section 3 for more details).

2.3.2 Chosen Cipher Text Attack

A Chosen Ciphertext Attack (CCA) is a cryptographic attack in which an adversary can
obtain decryptions of chosen ciphertexts and use this information to break the encryption

13

scheme or recover secret keys. A common attack in ElGamal-based threshold decryption
systems exploits the scheme’s homomorphic properties. The attacker alters a user’s uploaded
encrypted data and submits it. TDH2 strengthens ElGamal-style threshold decryption by
using zero-knowledge proofs and hash functions. This allows partial decryptions to be verified
without exposing secret key shares. TDH2 is secure under Decisional Diffie-Hellman (DDH) in
the random oracle model, and the threshold decryption scheme is CCA2 secure. This ensures
the protocol is secure even if an attacker can obtain decryptions of arbitrary ciphertexts,
except the one they are trying to break.

2.3.3 Replay Attack

In this particular setup and scenario, a malicious attacker might carefully observe and mon-
itor encrypted data as it is being submitted to the network, and then strategically front-run
the legitimate submission by uploading the exact same encrypted data before the original
submitter completes their transaction. By doing this, the attacker could falsely claim own-
ership and authorship of those data and subsequently, at a later point in time, submit a
request to have those data decrypted, thereby gaining unauthorized access to information
they do not rightfully own.

To address and mitigate this vulnerability, the CDR protocol implements a variation of
the TDH2 (Threshold Decryption of Hybrid ciphertexts) scheme that specifically replaces the
enclosed symmetric encryption component with AES-GCM (Advanced Encryption Standard
in Galois/Counter Mode). Within this implementation, the allocated unique ID is incorpo-
rated as additional authenticated data (AAD) in the AES-GCM encryption process. The
core contract is responsible for verifying that the entity making the upload is indeed the
initial requester, and captures and stores the unique allocated ID alongside the encrypted
data for subsequent use during the threshold decryption process performed by committee
members. In cases where an invalid or incorrect AAD is provided or used during the de-
cryption attempt, the decryption process will fail and produce an authentication error, thus
preventing unauthorized access to protected data.

2.3.4 Liveness Attack

Given that our system operates on the basis of a threshold of participation among committee
members to maintain operational functionality, the overall liveness and availability of the
system becomes vulnerable and is placed at risk in scenarios where more than the accepted
threshold of the committee members experience downtime, go offline, or otherwise lose access
to their respective kernel instances.

To effectively mitigate this potential risk and maintain system integrity, if the active
committee membership falls below the required operational threshold, an automated kernel
switch process is immediately triggered and initiated with a completely new setup configu-
ration and infrastructure. Additionally, as part of this mitigation strategy, those committee
members who have become inactive or not responding will receive appropriate penalties
according to the protocol’s enforcement mechanisms.

14

Note that in case of committee member TEE failure, if the committee member still has
access to the same hardware, it can redeploy the kernel and continue the operations since
kernel states are persistent. In case of failure that is not recoverable (e.g. change of hardware),
the member has to wait until the end of the epoch and request to continue with a new TEE
instance.

3 Upcoming Improvements

In previous sections, we outlined our multi-layered architecture designed to ensure the secu-
rity of Confidential Data Rails. To further strengthen the foundation, we are already working
on adding additional layers of defense to the protocol across DKG, runtime decryption, and
TEE layers. At a high level, we are working accountable threshold operations, stronger bias
resistance, explicit proofs of misbehavior in DKG, and post-quantum readiness, together
with incentive updates aligned with these capabilities.

Share leakage / misuse detection and attribution. We are upgrading the protocol to
add the ability to identify and punish committee members if we detect share leakage or
malicious use of their share—including cases where a subset colludes off-protocol. This
would act as an extra layer of protection. Concretely, we will integrate traceable secret
sharing (TSS) so that a black-box “reconstruction oracle” can be traced to at least one
leaking identity without exposing honest shares!'”l. At DKG /refresh /reshare time, each
Shamir share (z;) will be wrapped with an identity-bound correlation tag (per-epoch)
that (i) preserves standard interpolation for TDH2 and (ii) enables black-box tracing
with a bounded number of challenge shares. If a leak is suspected, a tracer (attested
enclave or quorum) will run the TSS procedure to output a succinct accusation artifact,
tied to the on-chain transcript and epoch. To strengthen forensics beyond cryptogra-
phy, Data owners may opt into content/model watermarking (robust canaries; neural
watermarks) for post-transfer attribution, while T'SS will cover pre-transfer validator
misuse. We will evaluate efficient building blocks that keep overhead near-constant per
share and remain compatible with our Shamir/TDH?2 interface!'!%13),

Identifying malicious actions during DKG. We are also updating the DKG so that
malicious actions can be distinguished from simple inactivity and so that misbehavior
yields succinct, reusable proofs. Concretely, we will design a publicly-verifiable path
(PVSS—DKG) where commitments, encrypted deals, openings, and complaints carry
lightweight NIZKs that the core contract can verify, following a Mt. Random disci-
pline with modern YOLO YOSO primitives3]. Each sent share will be accompanied
by: (a) a consistency proof that it opens the dealer’s commitments and (b) a proof
that the ciphertext actually encrypts that opening to the recipient. Complaints will
include signed transcripts; invalid complaints will be provably punishable. The same
pattern will apply to proactive reshare: deals and challenges will produce on-chain ver-
ifiable evidence, enabling precise slashing and minimizing reliance on TEE honesty for
correctness. DKG /reshare transcripts will be epoch- and identity-marked.

15

Bias resistance. We will harden the setup against delay-reveal and abort bias. Although
kernels use sealed randomness and measured binaries, a member could still bias PK by
strategically withholding openings. We will enforce strict commit—then—open schedules
and derive reveal windows from unbiased, publicly verifiable beacons (VRF/VDF /class-
group) anchored on-chain!'*'213] Aborts after the beacon will incur higher penalties;
repeated aborts will trigger exclusion. Only constant terms (needed for PK) will be
revealed in the end; all other coefficients remain information-theoretically hidden. Out-
puts and per-node fragments will be audit-marked by epoch for post-incident analysis.

Post-quantum readiness. We will pursue hybrid payload protection that encapsulates
the symmetric key under both DL/DDH (TDH2) and MLWE KEMs in AND-mode (or
policy-selected hybrid) without changing the data-path format: the recovered session
key will be derived via HKDF over both decapsulations. In parallel, we will evaluate
lattice-based DKG/decapsulation tracks: initially, the discrete-log track will run as
today, while a PQ track (e.g., MLWE KEM with Shamir-style threshold decapsulation
inside TEEs) will run in tandem, allowing epoch-wise migration. We will also adopt
signature agility so that validator attestations can move to PQ signatures without
disrupting decryption (dual-sign during transition).

Incentives and Proof of Cloud. We will revise incentives with graduated penalties
backed by verifiable artifacts: (i) inactivity (time-outs) vs. (ii) bias-sensitive aborts vs.
(iii) cryptographic misbehavior (invalid shares, false complaints) identified by on-chain
checks. As an additional TEE safeguard, a threshold of kernels will periodically furnish
Proof of Cloud (or equivalent)!" attesting that enclaves run in physically secured,
policy-compliant cloud environments. Combined with proactive refresh/reshare and
multi-TEE diversity, this will raise the bar for at-scale share extraction while preserving
auditability and performance.

Conclusion

In this paper, we proposed the Confidential Data Rails (CDR) protocol, a secure and decen-
tralized framework for confidential on-chain data storage and transfer. This unlocks many
applications on Story; for example, it enables the programmable transfer of encrypted data
between IP owners and authorized license holders. We demonstrate that by using a multi-
layer architecture, the CDR protocol preserves end-to-end confidentiality of data without
sacrificing decentralization or usability. This is achieved through three pillars: decentral-
ized key generation and threshold decryption, restricting participant access to secret shares
through TEEs, and identifying share leakage and malicious actions with appropriate penal-
ties.

16

Acknowledgments

The authors thank Bernardo David, Dimitris Karakostas, Andrea Muttoni, and Arash Afshar
for valuable feedback on the early design of this work, and Ratil Martinez, Meng Li, Yao
Wang, and Woojin Kim for their contributions to the first version of Confidential Data Rails.

References

[1]

2]

3]

[11]

[12]

[13]

[14]

Story Foundation. Story: A peer-to-peer intellectual property network. https://www.story.
foundation/whitepaper.pdf, 2024.

Story Foundation. Story programmable ip license (pil) - a legal framework for ip licensing on-chain.
https://docs.story.foundation/concepts/programmable-ip-license/overview, 2024.

Yiannis Psaras and David Dias. The InterPlanetary file system and the Filecoin network. In 2020
50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental
Volume (DSN-S), page 80. IEEE, 2020.

George Danezis, Giacomo Giuliari, Eleftherios Kokoris Kogias, Markus Legner, Jean-Pierre Smith, Al-
berto Sonnino, and Karl Wiist. Walrus: An efficient decentralized storage network, 2025.

Guy Goren, Andrew Hariri, Timothy D. R. Hartley, Ravi Kappiyoor, Alexander Spiegelman, and David
Zmick. Shelby: Decentralized storage designed to serve, 2025.

D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE Transactions on Infor-
mation Theory, 44(5):1897-1905, 1998.

Andrea Muttoni and Jason Zhao. Agent TCP/IP: An agent-to-agent transaction system. https:
//arxiv.org/pdf/2501.06243, 2025.

Automata Team. Automata 2.0: the machine trust layer for wverifiable computation.
https://1690124894-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces
2FtYKuUrKwP1gYjyOsuCeT%2Fuploads)2FRKErQDfHOf 1byYf75vb1%2Flightpaper-v2.pdf7alt=
media&token=47a81c68-41c2-40fa-al156-b39e467a145f.

Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext attack.
Journal of Cryptology, 15(2):75-96, 2002.

Dan Boneh, Aditi Partap, and Lior Rotem. Traceable secret sharing: Strong security and efficient
constructions. In Annual International Cryptology Conference, pages 221-256. Springer, 2024.

Ignacio Cascudo, Bernardo David, Omer Shlomovits, and Denis Varlakov. Mt. random: Multi-tiered
randomness beacons. Cryptology ePrint Archive, Paper 2021/1096, 2021.

Ignacio Cascudo and Bernardo David. Publicly verifiable secret sharing over class groups and applica-
tions to DKG and YOSO. Cryptology ePrint Archive, Paper 2023/1651, 2023.

Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. YOLO YOSO: Fast and simple
encryption and secret sharing in the YOSO model. Cryptology ePrint Archive, Paper 2022/242, 2022.

Proof Of Cloud. https://proofofcloud.org/.

17

https://www.story.foundation/whitepaper.pdf
https://www.story.foundation/whitepaper.pdf
https://docs.story.foundation/concepts/programmable-ip-license/overview
https://arxiv.org/pdf/2501.06243
https://arxiv.org/pdf/2501.06243
https://1690124894-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FtYKuUrKWPlgYjy0suCeT%2Fuploads%2FRkErQDfHOf1byYf75vb1%2Flightpaper-v2.pdf?alt=media&token=47a81c68-41c2-40fa-a156-b39e467a145f
https://1690124894-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FtYKuUrKWPlgYjy0suCeT%2Fuploads%2FRkErQDfHOf1byYf75vb1%2Flightpaper-v2.pdf?alt=media&token=47a81c68-41c2-40fa-a156-b39e467a145f
https://1690124894-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FtYKuUrKWPlgYjy0suCeT%2Fuploads%2FRkErQDfHOf1byYf75vb1%2Flightpaper-v2.pdf?alt=media&token=47a81c68-41c2-40fa-a156-b39e467a145f
https://proofofcloud.org/

[15]

[16]

[17]

[18]

[19]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. In Workshop on the Theory
and Application of of Cryptographic Techniques, pages 522—-526. Springer, 1991.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, 1979.

Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual Sympo-
stum on Foundations of Computer Science (sfes 1987), pages 427-438. IEEE, 1987.

Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Annual international cryptology conference, pages 129-140. Springer, 1991.

Rosario Gennaro, Stanistaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation
for discrete-log based cryptosystems. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 295-310. Springer, 1999.

John Canny and Stephen Sorkin. Practical large-scale distributed key generation. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 138-152. Springer, 2004.

Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials
and their applications. In International conference on the theory and application of cryptology and
information security, pages 177-194. Springer, 2010.

Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 444-460. Teee, 2017.

Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series, consensus
system. arXiv preprint arXiw:1805.04548, 2018.

Ferran Alborch, Ramiro Martinez, and Paz Morillo. R-lwe-based distributed key generation and thresh-
old decryption. Mathematics, 10(5):728, 2022.

Kamil Doruk Gur, Jonathan Katz, and Tjerand Silde. Two-round threshold lattice-based signatures
from threshold homomorphic encryption. In International Conference on Post-Quantum Cryptography,
pages 266—300. Springer, 2024.

Yvo Desmedt. Society and group oriented cryptography: A new concept. In conference on the theory
and application of cryptographic techniques, pages 120-127. Springer, 1987.

Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In 26th Annual Symposium on Foundations of Computer
Science (sfcs 1985), pages 383-395. IEEE, 1985.

Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
transactions on information theory, 31(4):469-472, 1985.

Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext attack.
In International Conference on the Theory and Applications of Cryptographic Techniques, pages 1-16.
Springer, 1998.

Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous verifiable secret
sharing and proactive cryptosystems. In Proceedings of the 9th ACM Conference on Computer and
Communications Security, pages 88-97, 2002.

18

[31]

32]

[33]

[36]

[37]

Ran Canetti, Rosario Gennaro, Stanistaw Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive security
for threshold cryptosystems. In Annual International Cryptology Conference, pages 98-116. Springer,
1999.

Andreas Erwig, Sebastian Faust, and Siavash Riahi. Large-scale non-interactive threshold cryptosystems
in the yoso model. Cryptology ePrint Archive, 2021.

Philippe Bulens, Damien Giry, and Olivier Pereira. Running {Mixnet-Based} elections with helios. In
2011 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE 11),
2011.

Haoqgian Zhang, Louis-Henri Merino, Vero Estrada-Galinanes, and Bryan Ford. Flash freezing flash
boys: Countering blockchain front-running. In 2022 IEEE /2nd International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 90-95. IEEE, 2022.

Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat: Asynchronous bft made practical. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 20282041,
2018.

Chelsea Komlo and Tan Goldberg. Frost: Flexible round-optimized schnorr threshold signatures. In
International Conference on Selected Areas in Cryptography, pages 34—65. Springer, 2020.

Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa with fast trustless setup. In
Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, pages
1179-1194, 2018.

19

Appendix A - Cryptographic primitives

In this section, we detail the cryptographic primitives that secure Confidential Data Rails.

Notation. We use a cyclic group G = (g) of prime order ¢, and an independent generator hpeq € G such
that log, (hped) is unknown (for Pedersen commitments). We also fix an independent generator g € G with
log,(g) unknown (used in Chaum-Pedersen proofs). The threshold is ¢ < n. The DKG output is a distributed
secret € Z, with the network public key h := g” (used exclusively as the encryption key). We write Z,
consistently, and use “Chaum—Pedersen” and “Fiat—Shamir” with typographic en-dashes. Hash functions
are typed as follows: Hy : G — {0,1}* (KDF/XOF to a message-length mask), and Ha, Hy : {0,1}* — Z,,
each with domain separation.

Distributed Key Generation via Pedersen Scheme

Distributed Key Generation (DKG) is a foundational component of threshold cryptography, designed to
enable a group of participants to jointly generate a cryptographic key pair without requiring any single
party to know the private key. The goal is to eliminate reliance on trusted third parties while ensuring
robustness, verifiability, and fault tolerance.

Early work by Pedersen'®! introduced the first verifiable DKG protocol based on Verifiable Secret Sharing
(VSS)16:17:18] " allowing participants to confirm the integrity of each share without revealing secrets. This
seminal construction established the basic principles of verifiable randomness and public commitments that
underpin all later DKG designs.

Subsequent improvements focused on efficiency, scalability, and robustness. Gennaro et al. ') provided a
formal treatment of DKG in the presence of malicious adversaries, identifying biasing attacks on Pedersen’s
protocol and providing a provably secure construction that ensures uniform key distribution and secrecy for
discrete-log systems. Canny and Sorkin [*”) later developed a large-scale DKG protocol optimized for Internet-
sized networks, substantially reducing communication overhead. Building on these, Kate, Zaverucha, and
Goldberg?!! introduced pairing-based polynomial commitments, achieving constant-size verification data
and near-linear scalability.

Beyond traditional discrete-log settings, DKG has also evolved in the context of large distributed systems
and blockchains. Syta et al.’s RandHound and RandHerd protocols[?? leveraged DKG as a core primitive
for decentralized randomness generation with public verifiability, while Hanke et al.’s Threshold Relay in
DFINITY [*?! integrated a BLS-based DKG mechanism directly into blockchain consensus, demonstrating
DKG’s applicability to global-scale, long-lived networks.

In parallel, the DKG paradigm has been extended to post-quantum settings. Recent research has explored
lattice-based DKG constructions under the (Module/R-)LWE and MSIS assumptions, offering quantum-
resistant alternatives. Notably, Alborch et al.[*] proposed an R-LWE-based DKG supporting threshold
encryption and decryption, while Gur et al.[?] designed a two- round lattice-based DKG achieving arbitrary
t-of-n thresholds with tight security proofs. These advances show that robust DKG mechanisms can be
realized even under quantum-resistant assumptions, although practical deployment remains challenging due
to communication and performance overhead.

Despite these developments, Pedersen DKG remains one of the most practical and trusted choices in real-
world distributed systems, particularly within architectures constrained by Trusted Execution Environments
(TEEs). Its enduring relevance stems from three key advantages: (1) simplicity and auditability based on
standard discrete logarithm assumptions, (2) deterministic verifiability of shares and commitments, and (3)
computational efficiency compatible with TEE-based execution.

Protocol Description. We outline a Pedersen-style DKG tailored for Confidential Data Rails proto-
col. The protocol enables a set of n validators P = {Py, ..., P,} to jointly generate a public/private key pair
(PK, z), where the private key « € Z, remains secret shared among participants and the public key PK = ¢*
is globally verifiable on-chain. The DKG proceeds over a cyclic group G' = (g) C Z, of order ¢, with an

20

independent second generator hpeq € G such that logy hpeq is unknown. The global parameters are

params = (p, q, g, hped, G, 1, 1),
where ¢ denotes the reconstruction threshold.

1. Polynomial Commitment. Each participant P; independently samples two random degree-(t — 1)
polynomials over Z,:

t—1 t—1
= apX*, (X)) =D rpXh,
k=0 k=0

where coefficients a;i, ;5 are drawn uniformly at random. P; then commits to its coefficients using

Pedersen commitments:
Cik=g%"hli€G, k=0, t-1,

and broadcasts the commitment vector {C}} to the blockchain for public verifiability.

2. Share Distribution. For each participant P;, P; computes
i = fi@), rig = f),
and securely transmits (s;;,r;;) to P;.

3. Verification and Complaint. Each P; verifies consistency:

g = HC (mod p).

If false, P; raises an on-chain complaint. Invalid responses trigger the exclusion or penalization of P;,
enforced by the CDR’s core contract.

4. Aggregation and Public Key. After verification, each validator computes local aggregates

n n
T; = E 545 mod g, r, = E r;; mod gq.
Jj=1 j=1

Since Cjo = gaﬂohrég, the network public key cannot be obtained by Hj Cj0. Each P; therefore

publishes
Y=g

together with either (i) an opening ;o such that C o =Y} hpgd, or (ii) a zero-knowledge consistency

proof that C; ¢ and Y; share the same ajo. The network pubhc key is
n

(Only the constant terms are opened/linked; the rest of the DKG transcript remains information-
theoretically hiding.)

21

Proactive Share Refresh. To mitigate share aging and maintain forward secrecy, the protocol
supports a proactive refresh that rerandomizes private shares without changing the global secret x or the
public key PK.

1. Zero-constant polynomials. Each participant P; samples two random degree-(t — 1) polynomials
with zero constant terms:

t—1 t—1
g (X) = X", gj(X) =D b x".
k=1 k=1

2. Commitment broadcast. P; publishes commitments to the coeflicients:

_ b; b/'k
Dijk = g7" e

iy k=1,..t—1.

3. Private share distribution. For each P;, P; sends the corresponding evaluations:
dij = 95(1), pij = g;(0).

4. Verification. Each receiver verifies the correctness of its received shares via:
t—1
8ij pPii L i*
g hped - Dj,k:'
k=1

5. Share update. Upon successful verification, P; locally refreshes its share and (re)derives the public
fragment:
Z; exﬂrz&j mod g, i eriJerij mod g, hi < g*.
J J

6. Public key invariance. Since all g;(X) have zero constant terms, the aggregate secret remains
unchanged:
PK = ¢*.

Proactive Share Reshare. In addition to periodic proactive refresh, the protocol supports a proac-
tive reshare procedure that reassigns secret shares to a new participant set P’ = {Pj,..., P/, } while preserv-
ing the global secret x and public key PK = ¢”. This allows the committee to dynamically add or remove
validators (e.g., during kernel/committee rotation) without re-running a full DKG.

1. Select a qualified old subset and precompute anchors. To enable dynamic reconfiguration
without re-running a full DKG, the protocol selects any qualified subset S C P of size t or more to
act as the re-dealers. Let S C P be any qualified old subset with |S| > t. For notational clarity, old
indices are j € S and new indices are ¢ € {1,...,n'}. Compute the Lagrange coefficients at 0 over Z,
for the old points S:

—/
s
AF = H i (mod q).
lesS
(7]

Using the on-chain Pedersen commitments from the original DKG, form the public anchors for each
old index j:

n t—1
~ -k T‘J‘
Cj = H H Céj,k = gmj h’ped’
£=1 k=0
where x; = >, fo(j) and r; = Y, f;(j) are the (hidden) aggregated share and blinding values held
by P; from the latest epoch. The elements éj are publicly computable.

22

. Per-dealer resharing polynomials (weighted constants). Each old participant P; € S samples
two random degree-(t' — 1) polynomials with zero constant terms:

t'—1 t'—1

hi(X) =Xt (X)) =)y,
k=1 k=1
and defines the weighted resharing polynomials

Fj(X) = XNa; +h;(X), FI(X) = Ar; +h(X).

constant constant

The)\f weights ensure that the new aggregate secret remains .

. Commitment broadcast. Each P; publishes Pedersen-style commitments to the (non-constant)
resharing coefficients:

/
. C.
E;j = g% b

e k=1,...,¢ — 1.

. Private share distribution to new members. For every new participant P;, P; computes
si; = Fy(i) = Ay + hi (@), riy = Fj(i) = Ary + (i),

encrypts (sj;,7;;) to P’s enclave communication key, and transmits privately.

. Per-share verification at the receiver. Each recipient P, verifies every received pair (si;,7;;) by
checking the publicly verifiable relation

t'—1
’
Tij

’ ~ S B
g i = (C)Y - [T Bk (mod p).
k=1

This binds the reshared values to the original DKG transcript (via @J) and to the new polynomial
coefficients (via Ej).

. Aggregation by new participants. Each new participant P/ aggregates all verified contributions
to obtain its fresh local share and blinding factor:

/o ’ r ’ r o xh
T, = E 8;; mod ¢, T = E ri; mod ¢, h; = g"i.
JjeSs jeS

(No extra Lagrange weighting is needed here because the constants were already multiplied by)\f on
the dealer side.)

. Public key invariance. Because) jes)\Jsxj = z, the new aggregate polynomial over the index set
of P’ has constant term x, hence the network public key remains unchanged:

n

PK=g" = [[o* = TL:)""

j=1 ies’

where S’ C {1,...,n'} is any qualified subset with |S’| > #', and A\¥" are the Lagrange coefficients at
0 for the new index set. This ensures continuity of the cryptographic identity of the network, while
redistributing trust across a new validator set.

This mechanism enables periodic renewal of validator state without reinitializing the entire key genera-
tion process. It protects against partial compromise, supports long-term operation, and facilitates adaptive
membership changes or audit-based re-randomization in the CDR committee, ensuring that stale shares
never accumulate into a systemic vulnerability.

23

Integration Discussion. In the first version of implementation of the CDR. protocol, each committee
member publicly releases its per-party key component h; = ¢g** after the DKG phase and after each proactive
refresh, enabling standard Chaum-Pedersen equality proofs log, h; = log,, u; within the TDH2 decryption
protocol. Once these public shares are available, the online threshold decryption is operationally equivalent
to Feldman’s construction!'”: each node provides a verifiable partial decryption, and any qualified subset
interpolates the result. The main modifications lie in the DKG setup and maintenance phases rather than
in the TDH2 runtime.

Compared with a pure Feldman approach, this design retains Pedersen’s advantages during key genera-
tion and refresh. The commitment form Cj = g%* h;éfl supports bias-resistant, delay-reveal publication of
the final public key via the Y; = g%° values with openings or consistency proofs, while keeping the rest of the
DKG transcript information-theoretically hiding. It also preserves privacy during proactive resharing and
supports migration to configurations that omit public h; values if stronger confidentiality is later required,
while keeping the decryption path lightweight and publicly verifiable.

Threshold Decryption (TDH2)

Threshold decryption is the natural complement to DKG. While DKG enables a set of participants to
collaboratively create a shared key without disclosing secret material, threshold decryption ensures that no
single node can decrypt ciphertexts alone. Instead, a subset of at least ¢ participants must cooperate, each
contributing a partial decryption that can be publicly verified and aggregated to recover the plaintext.

Threshold cryptosystems distribute decryption authority across multiple parties?%27 with Shamir’s
secret sharing['%! providing the algebraic backbone. Building on ElGamal’s multiplicative structure (2!,
Shoup and Gennaro formalized CCA-secure threshold decryption via TDH1/TDH2%2 combining veri-
fiable partial decryptions with NIZKs to achieve full CCA2 security (under DDH) in the random oracle
model (ROM) using the Fiat—Shamir transform. Robustness for asynchronous networks and mobile adver-
saries is addressed by asynchronous VSS and proactive techniques[®’!, while adaptive security is captured by
subsequent formal treatments!*!!. To scale beyond long-lived committees, non-interactive, large-scale thresh-
old cryptosystems in the YOSO model ®? decouple participation from persistent identities while preserving
public verifiability. In applied settings, threshold ElGamal/TDH2 support verifiable e-voting (e.g., Helios %3],
front-running-resistant commit-reveal designs[¥, and practical asynchronous BFT systems[®*). The same
“verifiable partial computation” paradigm informs modern threshold signatures, e.g., FROST’s two-round
Schnorr % and dealerless distributed ECDSA 37,

We adopt TDH2 as the network’s threshold decryption primitive because it matches our security and
systems constraints. Cryptographically, TDH2 delivers CCA2 security in the ROM under discrete-log/DDH
assumptions while binding decryptions to context via labels, preventing replay and cross-protocol misuse.
Operationally, each participant outputs a partial decryption with a non-interactive proof that is state-
lessly verifiable on-chain, enabling transparent auditing, accountability, and straightforward slashing policies.
Systems-wise, TDH2’s online path uses modular exponentiations and simple proofs (no pairings or heavy
ZKs), fitting TEE budgets and keeping gas/latency predictable. The scheme composes naturally with our
Pedersen-based DKG outputs and equality proof checks, so integration requires no bespoke crypto glue and
preserves public verifiability end-to-end. TDH2 also accommodates proactive share refresh and key-rotation
without altering the public key.

Protocol Description. We describe the Threshold Decryption Handler (TDH2) used in CDR for
verifiable, labeled public-key encryption and distributed decryption. The scheme enables any subset of ¢ out
of n validators, each holding a secret share x; of the global key x, to collaboratively decrypt ciphertexts under
public verification. All operations take place in the same group G = (g) of order ¢, using an independent
generator g to support Chaum-Pedersen-style NIZKs. The network public key is h = g%, derived from
the DKG phase. All exponentiations are modulo p; all exponents are in Z,. Implementations must enforce
group-member and canonical-encoding checks for all group elements.

24

Encryption (Labeled PKE). To encrypt m € {0,1}* under a public label L (associated data) and
context string ctx (for domain separation), the sender does:
1. Sample r, s & Zyq.

2. Compute

u:gr’ ﬂ:gra w=g, wW=g,

c=Hi(h") & m, e = Hy(ctx, ¢, L, u, w, 4, @), f=s+re (mod q).

3. Output the ciphertext
C=(cu,uae, f, L, ctx).

The tuple (u,,e, f) forms a Chaum-Pedersen-type NIZK of discrete-log equality log, u = log; u via
Fiat-Shamir. A verifier parses C' = (c,u, @, e, f, L, ctx), recomputes w = g/ /u® and w = g/ /¢, checks group
membership, and accepts iff e = Hs(ctx, ¢, L, u, w, @, w). (If ctx is a fixed system parameter, it may be
omitted from C and treated as implicit.)

Partial Decryption and Proof of Correctness. Each validator P;, holding share z;; and public
fragment h; = g®*, on input C = (¢, u, @, e, f, L, ctx):

1. Ciphertext verification. Recompute w = ¢f/u® and w = g//u®; check membership; reject if
e # Ho(ctx, ¢, L, u, w, @, 0).

2. Share computation and proof. Compute u; = u®. Sample s; & Zg, set u; = u®, b} = g%, and
€, = H4(Cth g, u, hia Uy, u;a h;)7 fl =S; +xi€; (mOd q)

Output the decryption share (u;, e;, f;).

Combining and Message Recovery. Given any valid set of ¢ decryption shares {(u;, e;, fi)}ics
for indices S C {1,...,n} with |S| = ¢, the aggregator proceeds:

1. Per-share verification. For each i € S, compute
u;/ _ ufi/u;fi’ h;/ — gfi/hfi’

check membership, and verify
€ = H4(CtX7 g, U, hia Us s ullv h;/)

4

Discard invalid shares.

2. Threshold interpolation. Using Lagrange coefficients at zero over Z, for points {1,...,n},
S _
JeS
J#i
compute

AP NS) Sk
S | A | (R R S S
i€es ies

3. Message recovery. Recover the plaintext:

m=H(Y)®ec.

25

	Introduction
	Problem Definition
	Confidential Data Rails

	Architecture Overview
	Core Components
	CDR Committee
	Kernels
	The Core Contract

	Process Overview
	Distributed Key Generation
	Kernel Rotation and Proactive Refresh
	Secure Data Transfer

	Security Considerations
	Privacy Attacks by Malicious Committee
	Chosen Cipher Text Attack
	Replay Attack
	Liveness Attack

	Upcoming Improvements
	Acknowledgments
	References

